P P SAVANI UNIVERSITY

First Semester of Diploma Examination November 2022

IDSH1020 Engineering Physics

29.11.2022, Tuesday

Instructions:

Time: 01:00 p.m. To 03:30 p.m.

Maximum Marks: 60

	tructions:				
1.		ion paper comprises of two sections.			
		and II must be attempted in same answer sheet. able assumptions and draw neat figures wherever required.			
		entific calculator is allowed.			
	000 01 001				
	Q-1	Choose the correct Answer.	[16]	CO	BTL
	(i)	The symbol to represent "Amount of Substance" is		1	1/2
		(a) K (b) A (c) Cd (d) mol		,	
	(ii)	Which is the system of unit?	1	1	1
		(a) SMS system (b) MKP system (c) FPS System (d) CJS System			
	(iii)	Which one of the following is the unit of velocity?		1	1
		(a) kilogram (b) metre (c) m/s (d) second			
	(iv)	Motion in a plane is called	*	1	2
	SIS T	(a)Motion in one dimension (b)Motion in two dimensions	+		
		(c)Motion in three dimensions (d)Motion in four dimensions			
	(v)	A body of mass 5 kg is travelling with a uniform velocity of 2 m/s.		2	5
	. ,	Its momentum is			
		(a) 10 kg m/s (b) 7 kg m/s (c) 2.5 kg m/s (d) 3 kg m/s			
	(vi)	β-decay of a nucleus is an example of		2	1/2
		(a) Electromagnetic Force (b) Gravitational force			
	(vii)	(c) Strong Nuclear Force (d) Weak Nuclear Force The energy possessed by the body by virtue of its motion is known		2	2
	(VII)	as?		-	116
		(a)Chemical energy (b)Thermal energy			
		(c)Potential energy (d)Kinetic energy			
	(viii)	A ball moves in a frictionless inclined table without slipping. The		2	4
		work done by the table surface on the ball is	1		
		(a) Negative (b) Zero (c) Positive (d) None of the options			
	(ix)	Hooke's law essentially defines		3	2
		(a) Stress (b) Strain (c) Yield point (d) Elastic limit			
	(x)	At critical temperature, the surface tension of a liquid		3	1/2
		(a) Is zero (b) Is infinity (c) Is the same as that at any other			
		temperature			
		(d) Can not be determined			
	(xi)	The commonly used unit of temperature is		4	1
		(a) Kelvin (b) Degree Fahrenheit (c) Degree Celsius (d) All			
	(xii)	The device used for heat measurement is called as		4	1
		(a) Thermometer (b) Barometer (c) Calorimeter (d) None			
	(xiii)	Spring is pulled down by 2 cm. What is amplitude of motion?		5	5
		(a) 0 cm (b) 6 cm (c) 2 cm (d) cm			
	(xiv)	The acceleration of particle executing S.H.M. when it is at mean		5	1/2
		position is			

	(a) Infinite (b) Varies (c) Maximum (d) Zero			
(xv)	Whenever a wave enters from one medium to the another, its		5	2
	(a) velocity changes. (b) frequency changes.			
	(c) frequency does not change. (d) wavelength remains constant.			
(xvi)	Decibel is the unit of		5	1
	(a) sound intensity (b) heat intensity			
	(c) light intensity (d) all of the above			
Q-2 (a	a) Sketch a neat diagram of Vernier calipers.	[04]	1	1/3
Q-2(1	How many-dimensional motion does the following have?	[04]	1	2/4
	(a) Train moving fast on its track.			
	(b) A lizard moving on a wall in a room.			
	(c) Kite flying in the sky.			
	(d) Bee flying in a closed room.			
	OR		,	
Q-2(a		[04]	1	5
	there are 50 divisions exists on circular scale. (1) Calculate the least			
	count of micrometer screw gauge in meter. (2) Calculate diameter			
	of the ball when main scale reading is 2 divisions and circular scale			
	reading is 27 divisions.			
Q-2(1) What is called Projectile motion? Derive the equation for maximum	[04]	1	2/3
	height and range of a projectile with a proper diagram.			
Q-3 (a	Define momentum and discuss the conservation law of momentum	[04]	2	2/4
	with an appropriate example.			
Q-3 (t	When force (6, 5, 2) N acts on a body displacement of the body in	[04]	3	5
	the direction of X-axis is 5m. Calculate work done.			
	OR			
Q - 3 (a	write a short note on gravitational force.	[04]	2	1/2
		[04]	- 4	1/2
Q - 3 (b	Discuss collision between two objects moving in one dimension with	[04]	3	2
	an appropriate diagram.			
Q-4	(a)Write the difference between vector and scalar quantities with an	[03]	2	1/2
	example.	[03]	3	1
	(b) Write the S.I. units of force, momentum, and impulse			
	OR			
Q-4	(a) Explain Triangle method for vector addition with an appropriate	[03]	2	3
	diagram.	[03]	3	5
	(b) An astronaut accidentally gets separated out of his small		•	
	spaceship accelerating in inter stellar space at a constant rate of			
	$100\ m\ s^{-2}$. What is the acceleration of the astronaut the instant after			
	he is outside the spaceship? (Assume that there are no nearby			
	stars to exert gravitational force on him.)			
Q - 5 (a) What is the statement of Hook's law and also give its limitations.	[04]	1	1/2
Q - 5(b		[04]	4	1/2
4 5(0	OR	[04]	4	1
Q - 5(a		[04]	2	2/2
Q-5 (b		[04]	3	2/3
()	, and a solution	[04]	4	1

Q-6(a)	Define: (I)Time Period (II) Frequency (III) Amplitude (IV) Phase	[04]	5	1	
Q-6(b)	Write a short note on Doppler effect.	[04]	5	2/4	
	OR				
Q - 6(a)	What is the difference between Periodic motion and oscillatory motion?	[04]	5	2	
Q-6(b)	Give the difference between longitudinal wave and transverse wave.	[04]	5	1	
Q - 7	Write the statement of Pascal's law for fluids and also Discuss any one application of it.	[06]	5	2/3/4	
	OR				
Q - 7	Define: (I) Deforming Force (II) Restoring Force (III) Factor of safety	[06]	4	1	
	(IV) Surface Energy (V) Surface tension (VI) terminal velocity				

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create *